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Monopole emission of sound by asymmetric 
bubble oscillations, Part 2. An initial-value 

problem 
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La Jolla, CA 92037, USA 

(Received 16 June 1988 and in revised form 30 September 1988) 

In Part 1 it was shown that an asymmetric, normal-mode bubble oscillation will emit 
monopole radiation a t  second order. Here we show that a general initial distortion 
of the bubble, with no initial volume change, can be resolved into normal modes each 
of which radiates independently. The zero-order ‘breathing mode ’ is stimulated 
also. 

Because of the peculiar damping characteristics, and the possibility of a resonance 
between the distortion modes and the breathing mode, the pulse of sound produced 
by the initial distortion will appear to have approximately the frequency of the 
breathing mode. 

The conclusions are borne out in some detail by a comparison with the experiments 
of Fitzpatrick & Strasberg (1957) on the underwater sound generated by bubbles 
breaking away from a nozzle. A similar mechanism may contribute significantly to the 
generation of sound at the sea surface. 

1. Introduction 
In a previous paper (Longuet-Higgins 1989; referred to hereafter as Paper I) we 

showed that contrary to expectation a bubble oscillating in a normal distortion mode 
will, at second order, emit sound as in an ordinary monopole source of radiation. The 
effect is closely analogous to the generation of low-frequency sound by standing 
waves on the surface of deep water, or by oppositely travelling wave systems (see 
Longuet-Higgins 1950, 1953; Kibblewhite 1987). In the case of bubbles, the order of 
magnitude of the effect is such that it becomes an interesting mechanism for the 
generation of underwater sound in the ocean, especially at low wind speeds. 

The present paper continues the investigation in Paper I by considering the 
following initial-value problem : Suppose a bubble, during the process of formation, 
has a distorted shape, which for simplicity we asume to be axisymmetric, as in figure 
1. Suppose also that its volume is no different from that of the equilibrium sphere 
containing the same amount of air. What is the sound signal emitted from the bubble 
at subsequent times ? 

At first order in the distortion amplitude the initial distortion can be resolved into 
the sum of spherical harmonics, and we show in $2 that each harmonic, a t  second 
order, radiates sound independently of the others. Then in $3 we solve the initial- 
value problem in the case of a particular form of initial distortion (see figure 1).  The 

t Permanent address : Department of Applied Mathematics and Theoretical Physics, 
Silver Street, Cambridge CB3 9EW, UK. 

19 FLM 201 



544 M .  S.  Longuet-Higgins 

amplitude of the sound from a given harmonic is shown to be particularly enhanced 
when its frequency (which is double that of the linear oscillation) is almost in 
resonance with the zero-order ‘breathing mode’. For simplicity, damping is at first 
neglected. 

The various kinds of damping are examined in $$4 and 5.  Lamb’s formula for the 
viscous damping is shown to provide, at best, an order-of-magnitude estimate. 
However, thermal and radiation damping, which affect the second-order monopole 
emissions, may dominate the sound pulse initially. Since the combined damping is a t  
a minimum close to the resonant frequency of the breathing mode, the form of the 
pulse has predominantly this frequency. 

Some detailed calculations are presented in $6, and in $ 7  we make a comparison 
with the experiments of Fitzpatrick & Strasberg (1957). A discussion on the 
significance of the mechanism for sound production in the ocean follows in $8.  

Throughout this paper we use the notation already defined in Paper I. Reference 
to equations in that paper are prefixed by the symbol I. 

2. The general asymmetric case 

the form 
A general asymmetric disturbance will be given, to first order, by expressions of 

71 = c % , l ( W n ( W h  
a, 2 

(2.1.) 

where the sum is over all spherical harmonics of degree n and order 1. We shall here 
discuss in particular the asymmetric case when 1 = 0 and so S,, = P,,(cosO), though 
some of our results may be generalized, as in (I) $9. To fix the ideas let us take 

where a,  and b,  are given by I(6.6) and the frequency v, is given by I(6.7). We 
suppose there is no zero-order modal component, at first order. Then at second order, 
corresponding to  1(6.11), for example, we shall have an equation of the form 

the double sum being taken over all positive values of both m and n. The general 
products S,Sm, Sn,Sme etc., may be expressed in terms of spherical harmonics of 
degree not greater than (n+m) .  However, as in $6 of Paper I, we are interested only 
in the monopole term, which can be obtained by averaging each side of the boundary 
condition (2.3), for example, over the unit sphere. Then we may make use of 

LEMMA C 
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and 

LEMMA D 
, m = n  n(n+ 1 )  

to eliminate all products in which m + n ;  the right-hand side of the averaged 
equation (2 .3 ) ,  for example, reduces to a simple sum: 

with a similar sum for the other boundary condition. Hence the total contribution to 
the monopole radiation at second order is simply the sum of the contributions of the 
individual modes : i.e. 

F 2  = x%n (2 .7)  
n 

where pzn is given by I(7.1) .  There are no further interaction terms. 

3. An initial-value problem 
Let us consider the situation in which the fluid is initially at  rest everywhere, but 

the bubble surface is distorted by a given amount. For example, let us assume that 
at time t = 0 the radial displacement q1 is given by 

q l = e a (  1+cos8 ) a -c. 

where 5 is a positive integer and C is a constant to be chosen so that 

71 = 0, (3 .2)  

i.e. there is no initial change in the volume of the bubble. 
For large values of s we have approximately 

7 = e-sea/4 - Q. (3.3) 

This is a Gaussian curve with width proportional to 5 4 ,  very nearly ; the height is 
reduced to half the maximum height when 8 = k 81, where 

(3 .4 )  

Since the expression (3 .1)  is a polynomial of degree s in ,u = cos8, it may be 
expressed as a finite series of Legendre polynomials : 

where, by the orthogonality relation (2.4), 
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FIGURE 1 (a). For caption see page 548. 
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FIGURE 1 ( b ) .  For caption see next page. 
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FIGURE 1 (a-c). Development of the surface profile given by equation (3.1) in the case E = 0.5. 
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By use of Rodriguez' formula 

and integration by parts, the integral in (3.6) is reduceable to a beta-function (see for 
example Erdelyi et al. 1953). Hence 

(2n + 1 )  ( s  !)2 

(3.8) 
n < s, ( s - n ) ! ( s + n + l ) ! '  

n > s. 

ea Moreover c=-A, = -- 
s + l '  (3.9) 

By I $6, the first-order part of the solution is then given by 

n 
q1 = cR,Pn(cos8)cosant, 

n+l 

= c 5 4  (:) ~ , ( c o s  8) sin un t .  
,n+l 

(3.10) 

As an example we show computations for the case when B = 0.5 and s = 50. By 
(3.4) this corresponds to an initial half-width O1 = 13.2'. The coefficients 4, n = 1 to 
20, are given in table 1. The two largest coefficients, which are almost equal in 
magnitude, correspond to n = 4 and 5. 

The development of the resulting disturbance can be seen in figure 1,  where polar 
cross-sections of the bubble are shown at equal intervals of the dimensionless time 

t* = (T/a3)ft (3.11) 

up to t* = 3.0, We see that the energy a t  first propagates away from the original 
disturbance at  the pole 8 = 0, but subsequently converges toward the antipole 
8 = n. The maximum disturbance a t  the antipole occurs when t* = 0.9. Now since 
the mean wavelength of the nth harmonic is 2na/n, we may take the wavenumber 
roughly as k = n / a .  Then the group velocity of the dominant waves may be 
calculated as 

(3.12) 

in dimensional units. (This may be compared to the group velocity of aplane surface- 
tension wave which is g(T/k)i. When k = 4 . 5 1 ~  we have cg = 3,18(T/a)S). The time t* 
for the energy to travel a distance 7ca is therefore 

(3.13) 

in agreement with figure 1. 
A second convergence, this time a t  8 = 0,  occurs when t* = 1.9 and again a t  

0 = x when t* = 2.9. By this time, however, the energy is quite dispersed. Note that 
we have so far neglected all forms of damping. 
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n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

%lea 

0.0566 
0.0872 
0.1085 
0.1192 
0.1196 
0.1116 
0.0977 
0.0807 
0.0631 
0.0469 

n 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

% l e a  

0.0331 
0.0223 
0.0143 
0.0087 
0.0051 
0.0028 
0.0015 
0.0008 
0.0004 
0.0002 

TABLE 1 .  Coefficients A, for the initial-value problem of equation (3.1) 

To find the second-order part of the motion we have to solve 

h,, - 62r = 0, I 
(3.14) 

n 
@,, - aw2h, = 2 (M cos 2u, t +N) 

on r = a,  where w denotes the frequency of the free radial mode, see I(2.2), and M 
and N are given by I(6.24) and 1(6.25), subject to the initial conditions that 

h,, = 0, Qi, = 0, h, = 0 (3.15) 

when t = 0. The third condition states that there is no difference in volume between 
the initial volume and the volume of the equilibrium bubble. 

Equations (3.14) are satisfied by assuming that 

n 
h, = C(Xcos2rmt+Y-Wc0swt), 

6, = - z ( Z  sin 2un t - aw W sin wt) ,  
a 

r n  

(3.16) 

where X, Y and Z are constants given by I(6.27) and where W is to be determined. 
The terms multiplying W represent a free radial oscillation which is excited a t  time 
t = 0. 

The first two initial conditions in (3.15) are already satisfied. To satisfy the third, 
we must have 

W = X + Y ,  (3.17) 

hence (3.18) 

The pressure field at large distances is given by 

p 2  = - @ 2 t .  (3.19) 

On evaluating Z and W from the above equations we find after further reduction 

(3.20) 
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FIGUEE 2. The monopole pressure field p ,  corresponding to figure 1, shown as a function oft*, 
and when a = 0.01948 cm. KO damping. 

where 

and we have written 

The dimensionless 

1 ( n - l ) ( n + 2 ) ( 4 n - l )  T 
5 2 2 -  1 4(2n+ 1 )  a3 P, = - -A:, 

3(n-  1 )  ( n + 2 )  T 
Q,  = -Q2P, -k 4(2n+1)  -A: a3 J 

D2 = w2/4v:. 

pressure field 

Pz* = TP2/T> 

(3.21) 

(3.22) 

(3.23) 

i.e. the pressure at  large distances, but without the factor r-lT, was computed in the 
case corresponding to a bubble of radius a = 0.01948 cm, when 

w = 33.000 (T/u')'. (3.24) 

In this case the radial mode is very nearly in resonance with the sixth harmonic, for 
which 

2a6 = 33.466 (T/a3)4. (3.25) 

The result is shown in figure 2, where p:  is plotted against the dimensionless time t * .  
The most obvious feature is an almost sinusoidal variation of the wave envelope. This 
can be interpreted as a slow beat between the sixth mode of frequency 2a6 and the 
radial mode of frequency w .  

Also in figure 2 one can see a smaller modulation of period t* = 0.88 approximately. 
This appears to correspond to the time interval between successive convergence of 
energy a t  the poles, as shown earlier. Physically, because the second-order effects are 
proportional to the square of the local displacements, they produce a significant 
result on the radiated pressure only when the energy is sufficiently concentrated, that 
is a t  t* = 0 and at  subsequent polar convergences. 
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4. Viscous damping 
We have so far assumed the flow near the bubble to be inviscid and irrotational. 

In reality, the presence of viscosity implies that a t  the surface of the bubble the 
two tangential components of the stress must be continuous, while the normal 
component, which includes a viscous term, has a given discontinuity due to surface 
tension. To accommodate these boundary conditions other types of solution of the 
viscous equations of motion are required. 

i n  the first approximation, when the equations are linearized, and if the velocity 
vector is time-periodic, i.e. 

u’ K eiut, (4.1) 

then we find that (VZ+hZ)U’ = 0, (4.2) 

whcrc h = (-icr/v)i = (1-i) (cr/2v)t (4.3) 

(see Lamb 1932, p. 352). Solutions to  (4.2) exist in terms of functions 

where Bn+; denotes a Bessel function of order (n+t ) .  Lamb (1881, 1932) solves the 
problem of an oscillating viscous sphere, when u is finite a t  the origin r = 0. For a 
bubble, on the other hand, we require solutions vanishing as r+O, and the 
appropriate Bessel functions are 

(4.5) 

with x = hr. 
,Just as for the liquid sphere, it may be shown that for an oscillating bubble the full 

boundary conditions can be satisfied by adding such terms to an irrotational flow. 
However, because of the exponential factor ePz in (4.5) such terms contain factors 

(4.6) 
1 

e-h(r-a) = e-(l-i) (u /zv)Z(r-a)  

which decay rapidly with distance away from the boundary, and describe boundary 
layers whose thickness A is of order 

d - (2v/an)4 (4.7) 

where u, is the radian frequency. Such ‘Stokes layers’ are already familiar in the 
theory of water waves (see Lamb 1932, C . l l ) .  

The viscous dissipation in the fluid surrounding the bubble may be calculated as 
though the flow were irrotational, but only if the Stokes layers are relatively thin, i.e. 
if A 4 a. By (4.7) and I(6.7) this implies at least 

Taking v = 0.013 cm2/s and T = 75 dyne/cm we have 

[ ( d - 1 )  (n+2)a]i B 0.055 (4.9) 

in c.g.s. units. When a = 0.01 cm and n = 2 ,  the left-hand side equals 0.39 cma so that 
the inequality is apparently satisfied. 
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So it appears that we may calculate the dissipation D in the spherical harmonic 

\ I  

from the formula 

(4.10) 

(4.11) 

Hence D = 47r(n+ 1) (n+2) vb2,/u. (4.12) 

The kinetic energy, on the other hand, is given by 

Hence 

(4.13) 

(4.14) 

In both (4.10) and (4.12) the coefficient bn(t)2 should be averaged with respect to the 
time. Since the average kinetic energy is only half the total energy, and since both 
are proportional to the square of the amplitude, the damping factors for the wave 
amplitude is e-Ynt, where 

D (n+2) (2n+ 1) Y 
U2 

Yn=--  4KE - 
(4.15) 

This is equivalent to the formula given by Lamb (1932, p. 641). 
On closer examination, however, we notice that in (4.1 1 )  the dissipation function 

V*(VCP,)~ is proportional to r--(2n+6) which falls away almost exponentially with ( r - u ) .  
The thickness of the dissipation layer, on this basis, is of order a/(2n+6), so that a 
more appropriate condition for the neglect of the Stokes layers is 

S << a/(2n+6). (4.16) 

This suggests that (4.9) should really be replaced by 

When n = 2, this implies 

ui 9 0.30, 

(4.17) 

(4.18) 

which can be considered to be satisfied only when a exceeds 1 cm. For larger values 
of n the condition (4.17) is even more stringent. 

Thus it appears that Lamb’s formula (4.13) is, at best, an order of magnitude 
estimate. We accept it as such for the present purpose. On this basis the relative 
decay of the amplitude per cycle would be 

(4.19) 

With a = 0.02 cm and n = 2, for example, the right-hand side has the value 0.39. 
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5. Total damping 
Apart from viscous damping, the main energy loss may be expected to come from 

The average flux of energy outwards from a monopole with velocity potential 
radiation due to the monopole terms, and from thermal effectu. 

a 
@ =B-s inh( t - r / c )  (5.1) 

T 

(where h is the radian frequency and c the speed of sound) is easily shown to be 

F = 2nh2a2B2/c. (5.2) 

From (4.14) the total energy is 
E = 2naB2. (5.3) 

Hence the damping factor e-yRt due to radiation alone would be given by 

yR = F/2E = h2a/2c. (5.4) 

We may compare this with Lamb’s viscous damping factor (4.15). Setting n = 0, 
this gives 

yv = 2v/a2. (5.5) 

Thus yR/yv = h2a2/4vc. (5.6) 

yR/yv = (72- 1) ( n + 2 )  T/vc  

When, for instance A = 2a,  this becomes 

(5.7) 

which is independent of the bubble radius. However, since T/vc  = 0.041, we see that 
for moderate values of n the two sources of damping are of comparable magnitude. 

Thermal damping, along with viscous and radiation damping, was reviewed by 
Devin (1959), particularly in the case of resonant radial oscillations. Eller (1970) and 
Prosperetti (1977) have calculated the damping in forced radial oscillations and both 
show that for bubbles of given radius, thermal damping dominates a t  frequencies 
below resonance, while radiation damping dominates at frequencies above resonance. 
At resonance itself, the two are comparable. 

For thermal damping, Eller (1970) defines 

3( y - 1) [[( sinh [ + sin 6) - 2( cosh 6 - cos 5)] 
dTH = g2(cosh [- cos [) + 3(y - 1)  [(sinh 6 -  sin 6)  ’ (5.8) 

where 

Here h denotes 
for the gas; for 

[ = a ( 2 h / ~ , ) k  (5.9) 

the angular frequency of the forcing and Do is a thermal diffusivity 
air, Do = 0.2 cm2/s. Then 

I- Y y* = ~ 

3( y - 1 ) (sinh [ - sin [) 
1 +a&, [ + f (  Gosh 6 - cos [) 

(5.10) 

This quantity varies from 1, for bubbles pulsating isothermally, to 1.4, for bubbles 
pulsating adiabatically. Eller (1970) also defines 

o* = 3y*p,/a2. (5.11) 
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The thermal damping coefficient corresponding to yv and yR is then 

W*2 
YTH = ~4,. 

The total damping dToT may be specified by a dimensionless coefficient 

(5.12) 

(5.13) 

Now to take into account the effects of damping, note that in (3.16) the terms with 

(1) The viscous losses from the linear mode, which we assume given by (4.12). 
(2) The viscous losses from the second-order monopole, which we assume given by 

(3) The thermal and radiation losses from the second-order monopole, given by 

The first loss is proportional to A:, the second and third are proportional to 

On the other hand the coefficient of sinwt in (3.16) receives no further energy after 
time t = 0;  it  arises solely from the initial conditions. It has only the second and third 
kinds of damping, that is to say 

frequency 2un will be affected by the following: 

(4.12) with n = 0. 

(5.2) and (5.12), with A = 2un. 

A t .  

(4) Viscous losses given by (4.10) with n = 0 and b, replaced by B,. 
( 5 )  Thermal and radiation losses given by (5.2) and (5.12), with A = w .  
Since both (4) and ( 5 )  are proportional to Bi ,  this term will decay exponentially 

in the familiar way. 

6. Numerical calculations 
In order to calculate the rates of decay of the various modes we note that the total 

energy En of the nth mode contains significant contributions from both the first-order 
and the second-order oscillations. Thus we shall have generally 

En = E z )  + EF), 
where from 14.12) 

(n- 1)  (n+2) 
2n+ 1 

EE) = 2.1c TA: . 

I n  the second-order monopole oscillation, the kinetic energy is given by nuPi/4ui, 
where Pn is the coefficient in (3.21), or more accurately the coefficient of u/r  in (6.18). 
Since at resonance the kinetic and potential energies are equal, we have in general 

(6.3) 

P, being proportional to A:. So altogether we will have for the dissipation 0, and the 
energy En two relations of the form 

EZ) = (1 + w2/4a:) xaPi/4u:, 

where y = A:. If we assume that al, Fl, a2 and p2 remain constant during the process 
of decay, then from 

(6.5) -- an - -0, 
dt 
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we obtain 

This has the implicit solution 

which shows that y + 0 exponentially as t + CO. In practice, however, it is easier to 
determine y ( t )  by numerical integration from (6.6). 

For the free oscillation with frequency w* ,  the total energy 4 is given by 

I$, = Ei2) cc Qi, 
where Q, is the amplitude. Since 

Do = Dy K Qi (6.9) 

it follows that 4 a e-2yot (6.10) 

where yo is the ordinary damping coefficient for resonant radial bubble oscillations. 
The damping of the motion introduces small phase differences which in general can 

be ignored. In one context, however, these are important, namely in the response of 
the breathing mode to frequencies near resonance. We note that in (3.14), since 
6, cc l / r ,  we have 

- 1 -  
@,+. = - - @, (6.11) 

and 80 on differentiating the first of equations (3.14) with respect to t and eliminating 
62t we get, for every n 2 2, 

h,,, + w2h, = Re ( -M/a)  e21"nt --N/a. (6.12) 

To include damping in the response we must add a term 27, h,, to the left-hand side 
and replace w by the modified frequency w * ;  see (5.11). The solution of this equation 
satisfying the initial conditions 

h, = 0, h,, = 0. (6.13) 

Then t = 0 is 

a 

N 
aw*, 

t - - -M/u  
h -  
- (w*' - 4 ~ 2 , )  + 4iy0 (T, 

- w e-Yot cos (,*z - yi)t  t - e-Yot sin (,*2 - YoPk 2 (6.14) 

and the real part of the right-hand side is understood. From (6.13) we find 

and 

W =  - (~*'--4o;)M/a -- N / a  
w*2 (w*,  - 4(Ty + (4y04,)2 

+ w]. - ~ v ~ M / u  
(w*2-4(Tk)2+ (47, a,), 

w'= 

The pressure p, for large r can then be calculated from 

- a -  U2 
P, = -@,, = - - ( @ 2 , ) r = a  = -(6 2rt ) T=a r 

(6.15) 

(6.16) 

(6.17) 
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or from (3.14) 
U 2  

P2 = 7 h2tt - (6.18) 

From the above formulae we find that the pressure p 2  a t  the initial instant t = 0 
is given by 

T ( ~ ~ - 1 ) ~ ( n + 2 ) A i  - (P*)t=o = --z r 2 n + l  u2 
(6.19) 

which is independent of both yo and w*.  Moreover, for bubbles of a given initial 
shape, the ratios AJa are constant. Equation (6.19) then shows, remarkably, that 
the initial pressure p 2  a t  a fixed distance r from the bubble is independent of the 
bubble radius a. 

A physical explanation of this result can be given as follows. The pressure due to 
surface tension a t  the bubble is proportional to the mean curvature of the surface. 
Hence, for a bubble of given shape, the surface pressure is inversely proportional to 
the bubble radius a; for small bubbles it becomes very large. I n  fact its behaviour 
precisely matches the monopole behaviour of the pressure field itself, which varies 
inversely as r ,  when r 3 a. At first sight it seems incredible that a tiny bubble, 
however small its radius, can produce a finite effect a t  a fixed distance. The paradox 
is resolved when we consider that as the natural frequency of the bubble increases, 
so also does the damping, so that the pulse of energy emitted becomes increasingly 
short. (There are of course physical limits on bubble size due, for instance, to the 
absorption of gas across its surface.) 

In  the example of $3, when AJa is given by (3.8) with E = 0.5, we find 

(p2)t=o = -0.307 T / r .  (6.20) 

The solution (6.18) was evaluated numerically for different bubble radii a. Some 
typical results are shown in figure 3. In  each part of the figure the dominant 
frequency is a t  around the corresponding ‘resonant’ frequency o. This is for two 
separate reasons : First, there are always some modes carrying substantial amounts 
of energy such that 2un is nearly in resonance with w ;  see I figure 2 and table 1.  
Secondly, the damping happens to be a minimum not far from the resonant 
frequency ; see Eller (1970) and Prosperetti (1977). 

In figure 3(u) ,  the radius a is the same as in figure 2, that is a = 0.01948 cm, but 
the emitted pulse is different in two main respects. The damping is much greater, so 
that the pressure amplitude is now reduced to one-half its initial value in only 3 
cycles (0.5 ms). Also the resonant frequency w* has been slightly altered by the 
damping, so that the beat between it and the harmonic n =  6 is now much 
shorter. 

In figure 3 ( b ) ,  the bubble radius is increased to 0.05 cm, the resonant frequency w* 
of the pulse is longer and the damping is less. The same trend is contained in figure 
3(c) (a  = 0.1 cm) and in figure 3 ( d )  (a = 0.23 cm). In  figure 3 ( d )  the resonance is a t  
around n = 14 and the amplitude is halved in 6 cycles (4 ms). 

The rates of damping are very similar to these calculated elsewhere; the main 
difference arises from the viscous (linear) damping in the distortion modes, which 
contributes (nonlinearly) to the damping of the monopole terms. The method of 
excitation of the monopole modes, and of the breathing mode, is of course very 
different from that previously envisaged. 
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FIQURE 3 ( a , b ) .  For caption see facing page. 
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FIQURE 3. (a) As in figure 2, but with the addition of damping. (b)  a = 0.05 cm. (e) a = 0.10 cm. 
( d )  a = 0.23 cm. 
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FIGUNE 4. Oscillogram of the sound pulse from an air bubble formed at a nozzle, with 
synchronized photographs of the bubble (from Fitzpatrick & Strasberg 1957). 

7. Comparison with observation 
Figure 4, from Fitzpatrick & Strasberg (1957), shows the sound pulse produced by 

an air bubble as it breaks away from an underwater nozzle. The lengthscale is 
unspecified, but from the timescale and the frequency of the oscillation one can 
estimate the equilibrium radius a to be close to 0.23 cm, as in figure 3 ( d ) .  The form 
of the pulse in figure 4 is evidently very similar to  that in figure 3 ( d ) .  

I n  the fifth frame of figure 4 one can see in the bubble silhouette some clear 
evidence of a harmonic of degree n = 8. From the discussion in $3, we would expect 
this to correspond to a group velocity 

Hence the energy will be carried to the antipole in a time 

ms 

and will appear again a t  the antipole when it  is three times this amount, that is about 
27 ms after the initial breakaway. This may account for the bulge in the upper side 
of the bubble which is seen in the seventh frame. There probably was a similar bulge 
between the fourth and fifth frames. 

However, it was apparently not the harmonic n = 8 which was responsible for the 
sound pulse, but more probably the harmonic around n = 14, as indicated in $6 and 
figure 3 ( c ) .  

One interesting feature of the observed pulse in figure 4 is the beat with period 2 
cycles near the beginning of the pulse. This indicates thc presence of a frequency 
component h equal to  one-half that of the resonant frequency, i.e. 

h = $* x a,. (7 .3 )  
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We suggest that this could be the result of a third-order intersection. For, three 
frequencies A,, A,, A, will generally interact to produce a frequency 

= A, f A, k (7.4) 

Thus, for example, if A, = A, = A, = a, one could have 

A,,, = u,+un-a, = un. (7.5) 

We remark that the initial bubble shape seen in figure 4, frame 2, is actually 
somewhat sharper than in figure 5,  at t = 0. Thus the harmonic n = 14 probably will 
be larger relative to the others. Generally we must envisage an initial bubble profile 
even more sharply pointed, possibly with an outward-pointing cusp. For such a form, 
the second-order theory given here is inadequate; to cope accurately with such a 
highly non-linear situation, fully nonlinear calculations will be required, using for 
example a boundary-integral technique. 

8. Application to the ocean 
There is now very strong evidence (see Farmer 1987 ; Farmer & Vagle 1988) that 

naturally occurring underwater sound in the ocean comes mainly from surface 
sources, particularly breaking waves and whitecaps, but also from rain and falling 
spray. At  low wind speed it is possible that air pockets are entrained even in the 
absence of visible whitecaps (see Banner & Cato 1987; Longuet-Higgins 1988). A 
theory proposing that the emitted sound is due to the application of sudden 
additional pressures or velocities to a spherical bubble, just after it is formed, was 
given by Hollett & Heitmeyer (1987). 

It is obvious, however, that in developing from a plane surface into a spherical 
bubble, the surface must pass through some intermediate and highly non-spherical 
forms. One possibility, for example, is that the familiar overturning of the surface in 
a breaking gravity wave, or in a steep capillary ripple, will at  first trap a cylindrical 
pocket of air, which then will develop instabilities in a longitudinal direction. These 
will then grow so as to pinch of€ a closed ‘sausage’ of air. We note that the most 
rapidly growing instability of a hollow fluid cylinder has been shown by 
Chandrasekhar (1961) to have a length equal to about six times the diameter of the 
initial cylindrical cross-section. 

Here we propose to make an estimate of the contribution from such distortions of 
the surface during the process of bubble formation. 

Direct measurements of the rate of bubble formation in the ocean are are scarce, 
but from laboratory measurements Toba (1961) has estimated the mean rate of 
entrainment b of bubbles per unit time and per unit horizontal area of the sea surface, 
at given wind speeds. His results are reproduced in figure 1 of Paper I. At a wind 
speed of 11 m/s, for example, the most important bubble diameters are in the range 
0.4 to 4 mm. Let us assume 2a = 2 mm, so a = 0.1 cm. Toba’s figure then indicates 
that 

= 0.1 ern-* s-’ 
db B = -  

d(ln a )  

approximately, hence 
4 

b = s  
(O.l)d(lna) = 0.3 ern-, s-l. 

2a-0.4 

(8.2) 
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FIGURE 5. Assumed initial form of air pocket trapped near the sea surface. 
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FIGURE 6. The pressure field corresponding to figure 5.  

As a rough model one might consider an axisymmetric initial form similar to (3.1) 
but symmetrical in regard to the equator, that is to say with a second hump added 
a t  the antipole 8 = n: see figure 5. Thus we may assume that a t  time t = 0 

y l = c a (  i + c o s e  )'+ca( i-cose ) s - 2 ~ .  
(8.3) 

The coefficient A; corresponding to this form will be related to the coefficient A,, of 

(8.4) 
(3.8) by 

A:, = A[l+ ( -  ly]. 

The numerical computation of the pressure p ,  then proceeds as in $ 8 3 4 .  In  figure 6 
r /p , /T  is plotted against t* in the case a = 0.1 cm, c = 0.5. The initial magnitude is 
of order 

rpz = 0.75T = 3.0 e2T ern3/$ (8.5) 

in c.g.s. units. The duration of the pulse is of order 

7 = 4 m s .  (8.6) 
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So for the mean-square pressure amplitude we have 

P2 = ( ( ~ p ~ ) ~ )  b7 = 1 le4 ( ~ m / s ) ~ .  (8.7) 

We assume that each bubble emits radiation independently of the others. 
However, the presence of the free surface implies the existence of an image for each 
bubble, tending to reduce the pressure amplitude by a factor of order wz/c ,  where w 
is the radian frequency, z the distance of the bubble below the free surface and c the 
velocity of sound. Taking z = 1 cm and w = 2 x lo4 s-l, at this bubble radius, we 
find 

(8.8) 
zw 

C 
_ -  - 0.14 

approximately. For the total vertical flux of energy from all the source-image pairs 
we have 

Fz = n e )  zPg 
(8.9) 

where P is given by (8.7). Hence altogether we obtaint 

F, = 5.0 x e4 erg/cm2/s. (8.10) 

Now the above argument indicates that for the distortions that we are likely to 
encounter an approximate value of E would be of order 6. For such large values 
of E the perturbation analysis given earlier is hardly valid. Nevertheless, since the 
emission of the sound involves a high harmonic (n = 11) which may oscillate many 
times before the collapse of the bubble as a whole, the formula (8.10) may be 
expected to give still an order of magnitude for the sound intensity. In fact, if 
conservatively we substitute 6 = 1 into (8.10) we obtain 

Fz = 5 x lov5 erg/cm2/s. (8.1 1) 

A typical underwater sound pressure at a wind speed of 11 m/s and at a depth 
24 m below the surface, integrated over the frequency range 0.3 to 20 kHz, is 0.23 
Pa, r.m.s. (D. M. Farmer, personal communication). This implies a flux density, not 
necessarily vertical, equal to 3.5 x lop5 erg/cm2/s, which is entirely compatible with 
(8.11). 

An alternative approach to the problem is as follows. We note that a t  the larger 
bubble sizes, the viscous losses from the bubble oscillation become relatively small 
compared to the thermal and radiation losses. Since we are close to bubble resonance, 
the thermal and radiation losses are comparable, so that radiation losses account for 
perhaps half of the energy lost from the bubble in the dominant frequency range. 

Let 01 be the proportion of the initial energy which is converted to sound radiation. 
On our hypothesis a < 0.5, say. The initial energy, in the proposed mechanism, 
comes entirely from initial distortions of the bubble, and is proportional to TAS, 
where A S  is the excess surface area of the bubble, beyond the equilibrium valve. If 
we assume that AS is of the same order as S ,  we conclude that the energy released, 
per unit horizontal area of the sea surface, is of order aPT, where p denotes the new 

t In the above calculation we have ignored the reduction in radiation damping due to partial 
cancellation of the signal by its image. This will increase the pulse length, tending to make (8.10) 
an underestimate. 
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bubble surface area created per unit time, and per unit horizontal area of the sea 
surface. The total sound flux Fz is then given by 

Fz = aPT. 

/? = 4na2b, 
To estimate /? we have roughly 

(8.12) 

(8.13) 

where a is a representative bubble radius and b is given by Toba’s estimates. A t  a 
wind speed of 11 m/s, for instance, and with a = 0.1 em, (8.2) gives b = 0.04. So from 
(8.11) 

F, = 2 . 8 ~  erg/cm2/s. (8.14) 

Thus everything depends upon a. There may be no better way of determining a 
than by a detailed calculation such as we have carried out. Nevertheless, we see that 
this represents at least one possible mechanism whereby surface tension energy is 
converted directly into acoustical energy. 

9. Discussion and conclusions 
An arbitrary initial distortion of a bubble will produce a monopole sound 

radiation, whether or not there is an initial change of volume from the equilibrium 
volume. Generally, volume pulsations will be excited, dominantly those close to the 
frequency of the ‘breathing mode’. In $$2 and 3 we discussed one particular initial 
distortion of the bubble, of moderate amplitude. However, in the formation of closed 
bubbles, by whatever process, some extreme distortion is necessarily involved. At the 
surface of the sea, for example, pockets of air may be formed, even in light winds, by 
steep capillary waves (Toba 1961), or by capillary-scale features and short breaking 
waves. Such air pockets, initially cylindrical in form, will be unstable and will 
contract into spherical shapes, emitting sound in the process. 

An examination of the spectral range of natural sound in the ocean, approximately 
0.1 to lo2 kHz, shows that it includes many resonances between distortion modes and 
the ‘breaking mode’; see Paper I figure 2. 

Bubble formation in the ocean will of course take place close to the surface, which 
is a pressure release surface. Although this tends to reduce the intensity of the 
radiated sound, initial bubble distortions may still contribute significantly to 
underwater sound in the ocean. 

For information and discussions on the subject of bubbles I am particularly 
indebted to  Dr J. Rooney and Dr R. Glazman of J.P.L., Professor M. Tulin (UC 
Santa Barbara), Professor A. T. Ellis (UC San Diego) and Dr F. Henyey (LJI). An 
excellent introduction to the subject of underwater sound came from the participants 
at  the NATO Workshop held a t  Lerici, Italy, in June 1987, for which I thank 
especially the organizer, Dr B. Kerman. 

The main results contained in this paper were presented by the author at  a seminar 
given at  MIT on 18 May 1988. 
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